Markov Decision Processes

CE417: Introduction to Artificial Intelligence
Sharif University of Technology
Fall 2023

Soleymani

Slides have been adopted from Klein and Abdeel, CS188, UC Berkeley.

Non-Deterministic Search

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as
planned

80% of the time, the action North takes the agent North
(if there is no wall there)

10% of the time, North takes the agent West; 10% East
If there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step

= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid Stochastic Grid World

Markov Decision Processes

An MDP is defined by:

A set of statess € S

A set of actionsa € A

A transition function T(s, a, s’)
Probability that a from s leads to s/, i.e., P(s’| s, a)
Also called the model or the dynamics

A reward function R(s, a, s’)
Sometimes just R(s) or R(s’)

MDPs are non-deterministic search
problems
One way to solve them is with expectimax search
We'll have a new tool soon

What is Markov about MDPs?

- “Markov” generally means that given the present
state, the future and the past are independent

- For Markov decision processes, “Markov” means
action outcomes depend only on the current state

P(Siy1=5"|S; = 54, Ay = ay, Se—1 = 84—1, Ay—1,...50 = 50)

P(St—|—1 = Sl‘St =54, Ay = Clt)

- This is just like search, where the successor function

could only depend on the current state (not the
history)

Andrey
Markov (1856-
1922)

Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy t*: S - A

A policy &t gives an action for each state

An optimal policy is one that maximizes expected
utility if followed

A licit policy defi flex agent) .
n explicit policy defines a reflex ag Optimal policy when R(s, a, s') = -0.03

for all non-terminals s
Expectimax didn’t compute entire policies

It computed the action for a single state only

Optimal Policies

1]

R(s) = -0.4

|||
A b |=m
‘*'-'----
R(s) =-0.03
|||
A =
||

Example: Racing

Example: Racing

- Arobot car wants to travel far, quickly
« Three states: Cool, Warm, Overheated

- Two actions: Slow, Fast

- Going faster gets double reward
0.5

1 Slow

Slow

Overheated

1.0

11

(]

xample: Racing

a s' T(s,a,5") | R(s,3,s’)
Slow 1.0 +1

Fast 0.5 +2

Fast 0.5 +2
Slow 0.5 +1
Slow 0.5 +1

Fast 2| 1.0 10

2 | (end) “ 1.0 0

0.5

+2

Overheated

Racing Search Tree

13

MDP Search Trees

- Each MDP state projects an expectimax-like search tree

S —-_> sisa

state
4 TA
/—> (s,a,5’) called a
transition
b T(sa,s’) = P(s’
~~~~~~~~~~~~~~~ R(s,a,s’)
A S

14



Utilities of Sequences

15



Utilities of Sequences

- What preferences should an agent have over reward sequences?

More or less?

[1,2,2] or [2,3,64]
Now or later?

[0,0,1] or [1,0,0]

16



Discounting

- It's reasonable to maximize the sum of rewards
- It’s also reasonable to prefer rewards now to rewards later

- One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

17



Discounting

- How to discount?

Each time we descend a level, we X/'/( g A
multiply in the discount once N 1 J
o
- Why discount? = ,
Sooner rewards probably do have P N
higher utility than later rewards $ ,y
Also helps our algorithms converge )\ /A B
—
- Example: discount of 0.5 -
U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3 2
U([1,2,3]) < U([3,2,1]) _ _ )N
o A X
—

18



Stationary Preferences

- Theorem: if we assume stationary preferences:

P @

lar, az,...] > [by,ba,.. ] g R
g ) /4

[TJ ai,az, .. ] ~ [T, bl, b2, .. ]

- Then: there are only two ways to define utilities
Additive utility:  U([rg,7r1,72,...]) =ro+7r1+710+---

Discounted utility: U ([rg,71,79,...]) = rg + vr1 4+ v2ro- - -

19



Quiz: Discounting

10 1

a b c d 5]

Given:

Actions: East, West, and Exit (only available in exit states a, e)
Transitions: deterministic

Quiz 1: For y =1, what is the optimal policy?
Quiz 2: For y=0.1, what is the optimal policy?

Quiz 3: For which y are West and East equally good when in state d?

20



Infinite Utilities?!
= Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:
Finite horizon: (similar to depth-limited search)

Terminate episodes after a fixed T steps (e.g. life)
Gives nonstationary policies (r depends on time left)

Discounting: use0<y<1

[©.@)
U([ro, .- -re0]) = Y 41t < Rmax/(1 — )
t=0
Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will
eventually be reached (like “overheated” for racing)

21



Solving MDPs

22



Recap: Defining MDPs

- Markov decision processes:
Set of states S
Start state s, ,
Set of actions A o
Transitions P(s’|s,a) (or T(s,a,s’))
Rewards R(s,a,s’) (and discount y)

- MDP quantities so far:
Policy = Choice of action for each state
Utility = sum of (discounted) rewards

23



O

ptimal Quantities

The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

The value (utility) of a g-state (s,a):

Q"(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

The optimal policy:

24

7" (s) = optimal action from state s

-,
L’
A

sisa
state

(s,a)isa
g-state

(s,a,s’)is a
transition



Snapshot of Demo — Gridworld V Values

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =0

25



Snapshot of Demo — Gridworld Q Values

IO

00
O-VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =0



Values of States

- Fundamental operation: compute the (expectimax) value of a state
Expected utility under optimal action
Average sum of (discounted) rewards
This is just what expectimax computed!

- Recursive definition of value:

V*(s) = maxQ*(s, a)

Q*(s,a) = ZT(S, a,s) [R(s, a,s’) + ’YV*(S/)}

V*(s) = maaxZT(s,a,, s") {R(s,a, s+ ny*(s’)}

S

27



Racing Search Tree

28



Racing Search Tree

z/}l ;: sé}g\i
Ao A AL L

A s

T TR ETREL] VAT CHRTEIRE TR Tl



Racing Search Tree

- We're doing way too much
work with expectimax!

- Problem: States are repeated

Idea: Only compute
guantities once

needed

- Problem: Tree goes on forever

Idea: Do a  depth-limited
computation, but with increasing
depths until change is small

Note: deep parts of the tree
eventually don’t matterify<1

30

———
—



Value lteration

- Bellman equations characterize the optimal values:

V*(s) = mC?XZT(S,CL, s [R(s,a,s/) -+ ny*(sl)}

S

- Value iteration computes them:

Vig1(s) < mC?XZT(s, a,s) {R(S,CL, s+ 7Vk(s’)]

S

- Value iteration is just a fixed point solution method

... though the V| vectors are also interpretable as time-limited values

31



Time-Limited Values

Key idea: time-limited values

Define V|(s) to be the optimal value of s if the game ends
in k more time steps

Equivalently, it’s what a depth-k expectimax would give from s

32



Value Iteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vie1(s) < maaXZT(s, a,s) {R(s, a,s’) + ’ka(S/)}

Repeat until convergence

33



Computing Time-Limited Values

V(@) V(@) Vi(as) | < @ & A

T 2 T X T T

Va(@) Va(as) Va(as) @ff: hodl o A A -
Vi(e) Vi(as) Vilas) [ K| LEELEEEEE TR LR
A R O

V(@) To(a) Vo(as)| (I WLy T TR IV T VT E ] J

34



k=

35

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



N
|

36

1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

37

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

38

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

39

0.37 »| 0.66 )»

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

40

Cridworld Display

.H
A

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

41

Gridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

42

Gridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

43

Gridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

44

Gridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



45

Gridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



46

Gridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



47

Gridworld Display

VALUES AFTER

12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=100

Gridworld Display

AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =0

48



Value Iteration

49



Value Iteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vie1(s) < maaXZT(s, a,s) {R(s, a,s’) + ’ka(s/)}

Vs

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
Basic idea: approximations get refined towards optimal values
Policy may converge long before values do

50



Convergence*

How do we know the V, vectors are going to
converge?

Case 1: If the tree has maximum depth M, then Vi(s) Viws ()
V\, holds the actual untruncated values k k+1

Case 2: If the discount is less than 1

Sketch: For any state V| and V,,; can be viewed as
depth k+1 expectimax results in nearly identical
search trees

The difference is that on the bottom layer, V,,1 has
actual rewards while V| has zeros

Vi and V., are at most vy max|R| different
That last layer is at best all R,
It is at worst Ry,
But everything is discounted by y* that far out

So as k increases, the values converge

51



Example: Value Iteration

Fast
Slow y . g 10
w» | 35 25 0 -
Slow / ; ‘_W'arm ) g;(),«
O Q) Fast 05 +2 : S
. +1 00 0.5 Overheated '
Vi 2 1 0 | +2
Assume no discount!
" [ 0 0 0 J Vi1 (s) & max 7 (s,a,8) [R(s, 0,8+ Vi)
/

S

52



Recap: Defining MDPs

- Markov decision processes:
Set of states S
Start state s,
Set of actions A
Transitions P(s’|s,a) (or T(s,a,s’))
Rewards R(s,a,s’) (and discount y)

- MDP quantities so far:
Policy = map of states to actions
Utility = sum of discounted rewards
Values = expected future utility from a state (max node)
Q-Values = expected future utility from a g-state (chance node)



Recap: Optimal Quantities

The value (utility) of a state s (max node):

V*(s) = expected utility starting in s and acting
optimally

The value (utility) of a g-state (s,a) (chance node):

Q’(s,a) = expected utility starting out having
taken action a from state s and (thereafter)
acting optimally

The optimal policy:
7" (s) = optimal action from state s

54

sis a
state

(s,a)is a
q-state

(s,a,s’)isa
transition



The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Keep being optimal

—

95



The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

V*(s) = maxQ*(s, a)

Q*(s,a) = ZT(S, a,s) {R(s, a,s’) + ny*(sl)}

S

V*(s) = mC?XZT(s,a,S/) [R(s,a,s/) + vv*(s’)}

S

These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

56



Policy Extraction




Computing Actions from Values

Let’s imagine we have the optimal values V*(s)

How should we act?
It’s not obvious!

- We need to do a mini-expectimax (one step)

58



Computing Actions from Values

Let’s imagine we have the optimal values V*(s)

How should we act?
It’s not obvious!

We need to do a mini-expectimax (one step)

m*(s) = argmax Y T(s,a,8)[R(s,a, ') +1V*(s)]

S

- This is called policy extraction, since it gets the policy implied by the
values

59



Computing Actions from Q-Values

- Let’s imagine we have the optimal g-values:

- How should we act?
Completely trivial to decide!

60



Computing Actions from Q-Values

- Let’s imagine we have the optimal g-values:

- How should we act?
Completely trivial to decide!

7*(s) = argmaxQ*(s,a)

- Important lesson: actions are easier to select from g-values than
values!

61



Problems with Value Iteration

Value iteration repeats the Bellman updates:

Vi1(8) + mC?XZT(s,a, s {R(s,a, s+ nyk(s’)]

S

Problem 1: It’s slow — O(S?A) per iteration

Problem 2: The “max” at each state rarely changes

Problem 3: The policy often converges long before the values

62



k=

63

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



N
|

64

1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

65

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

66

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

67

0.37 »| 0.66 )»

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

68

Cridworld Display

.H
A

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

69

Gridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

70

Gridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

71

Gridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=

72

Gridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



73

Gridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



74

Gridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



75

Gridworld Display

VALUES AFTER

12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=100

Gridworld Display

AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =0

76



Policy Methods

77



Policy Evaluation

78



Fixed Policies

Do the optimal action Do what &t says to do

s,a,S

A s
- Expectimax trees max over all actions to compute the optimal values

- If we fixed some policy 7(s), then the tree would be simpler — only one action per state

... though the tree’s value would depend on which policy we fixed

79



Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy m:

V7(s) = expected total discounted rewards starting in s and following &t

Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)R(s,m(s),s") +~yV"(s)]

80



Example: Policy Evaluation




Example: Policy Evaluation

Always Go Right Always Go Forward

82



Policy Evaluation

How do we calculate the V’s for a fixed policy ?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

83



Policy Evaluation

How do we calculate the V’s for a fixed policy ?

Idea 1: Turn recursive Bellman equations into updates

S
(like value iteration)
7(s)
Vg (s) =0 Q s 7ls)
Vi1 (s) < ST (s,m(s), ) R(s, (), ) + V()] _s;als),s’
s’ A s

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
Solve with your favorite linear system solver

84



Policy Iteration




Policy Iteration

- Alternative approach for optimal values:

Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

Step 2: Policy improvement: update policy using one-step look-ahead with
resulting converged (but not optimall!) utilities as future values

Repeat steps until policy converges

This is policy iteration
It’s still optimal!

Can converge (much) faster under some conditions

86



Policy Iteration

Evaluation: For fixed current policy =, find values with policy evaluation:

Iterate until values converge:

Vi1 (s) = > T(s,mi(s), 8) [R(s, m:(s),s) + ~ vlji(s’)}

Improvement: For fixed values, get a better policy using policy extraction

One-step look-ahead:

mi+1(s) = arg maXZT(s, a,s) {R(S, a,s’) + ’yV”i(S/)}

S

87



Convergence property of policy iteration: 1t
— TT%

Proof involves showing that each iteration is also a contraction, and policy
must improve each step, or be optimal policy

Interesting theoretical note: since number of policies is finite (though
exponentially large), policy iteration converges to exact optimal policy

In theory, could require exponential number of iterations to converge
(though only for y very close to 1), but for some problems of interest,
converges much faster

This slide has been adopted from:
88


http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf

Comparison

Both value iteration and policy iteration compute the same thing (all optimal
values)

In value iteration:
Every iteration updates both the values and (implicitly) the policy
We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

We do several passes that update utilities with fixed policy (each pass is fast
because we consider only one action, not all of them)

After the policy is evaluated, a new policy is chosen (slow like a value iteration
pass)
The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

89



Policy iteration or value iteration?

Policy iteration requires fewer iterations that value iteration, but each
iteration requires solving a linear system instead of just applying Bellman
operator

In practice, policy iteration is often faster, especially if the transition
probabilities are structured (e.g., sparse) to make solution of linear system
efficient

Modified policy iteration (Putterman and Shin, 1978) solves linear system
approximately, using backups very similar to value iteration

often performs better than either value or policy iteration

This slide has been adopted from:
90


http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf

Summary: MDP Algorithms

- S0 you want to....
Compute optimal values: use value iteration or policy iteration
Compute values for a particular policy: use policy evaluation
Turn your values into a policy: use policy extraction (one-step lookahead)

- These all look the same!

They basically are — they are all variations of Bellman updates
They all use one-step lookahead expectimax fragments
They differ only in whether we plug in a fixed policy or max over actions

91



