Markov Decision Processes

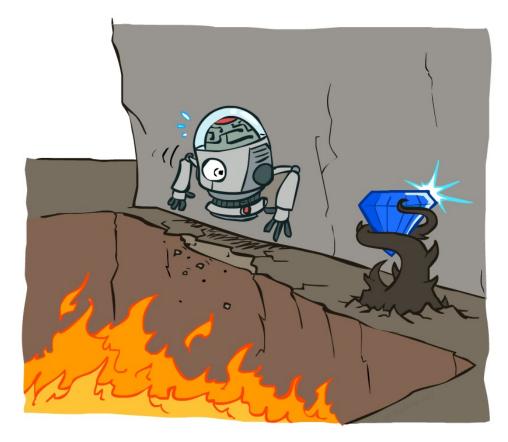
CE417: Introduction to Artificial Intelligence Sharif University of Technology Fall 2023

Soleymani

Slides have been adopted from Klein and Abdeel, CS188, UC Berkeley.

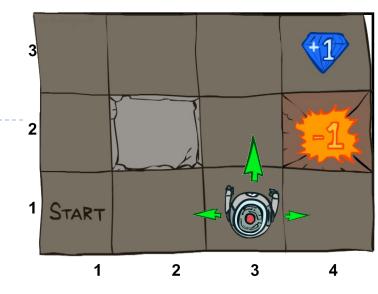
Example

Non-Deterministic Search

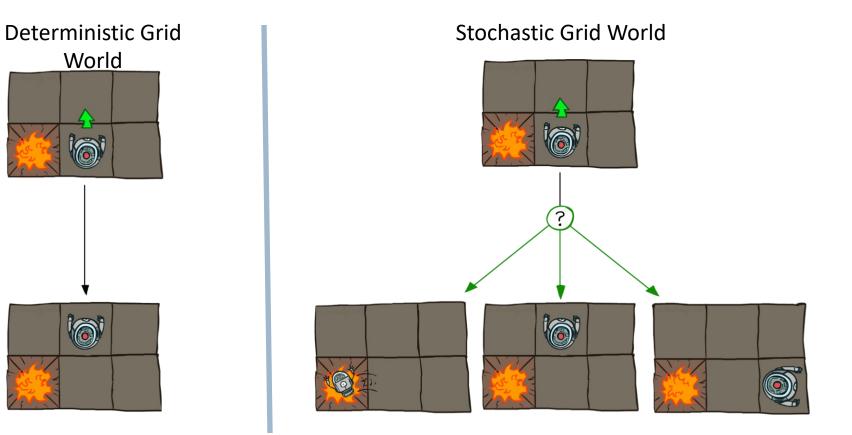


Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

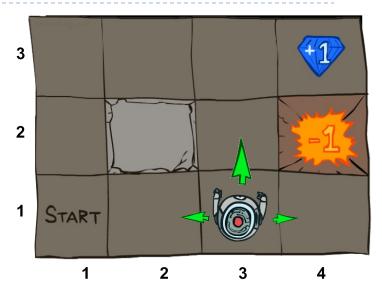


Grid World Actions



Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')



- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

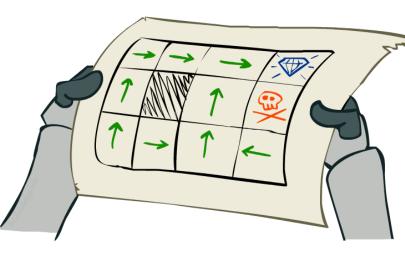
_

Andrey Markov (1856-1922)

 This is just like search, where the successor function could only depend on the current state (not the history)

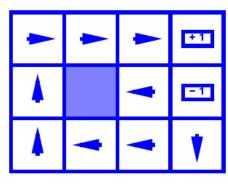
Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
 - It computed the action for a single state only

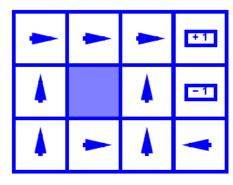


Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

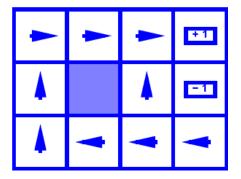
Optimal Policies



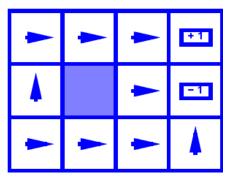
$$R(s) = -0.01$$



R(s) = -0.4

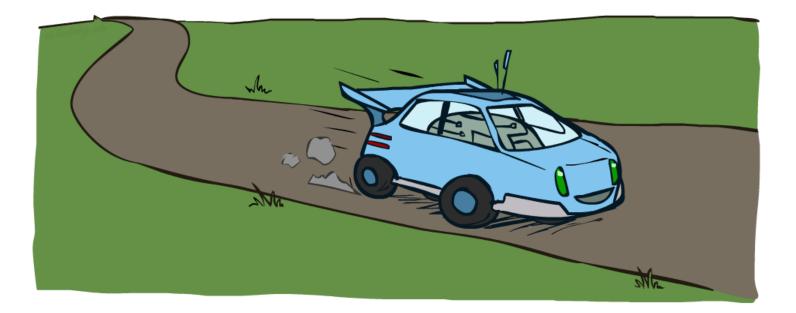


$$R(s) = -0.03$$



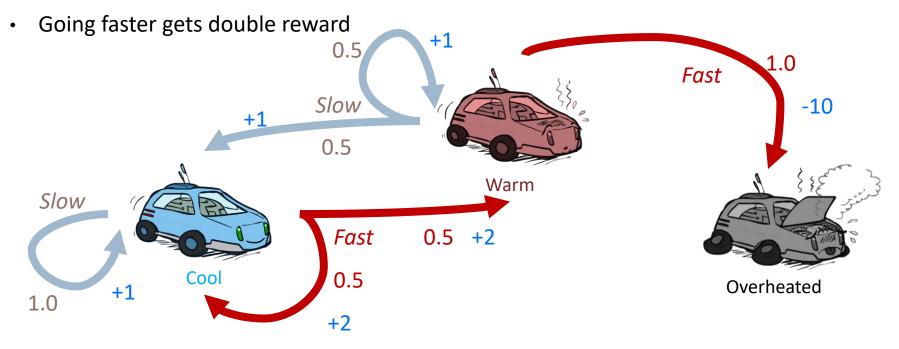
R(s) = -2.0

Example: Racing

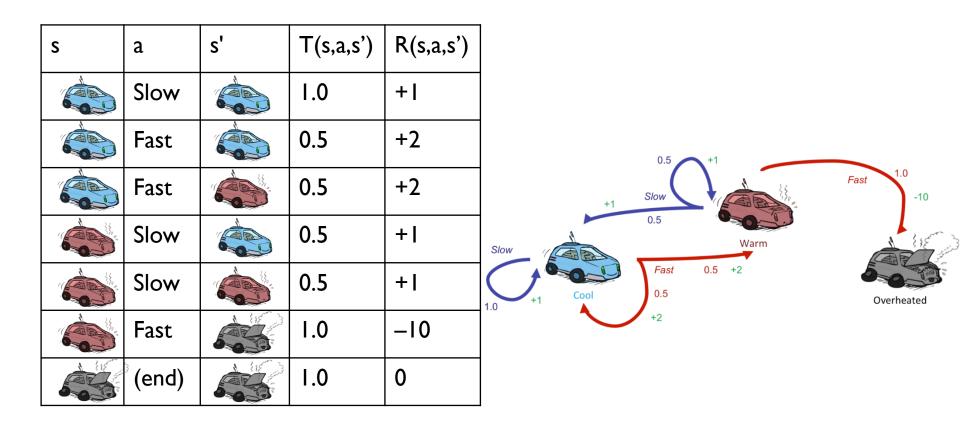


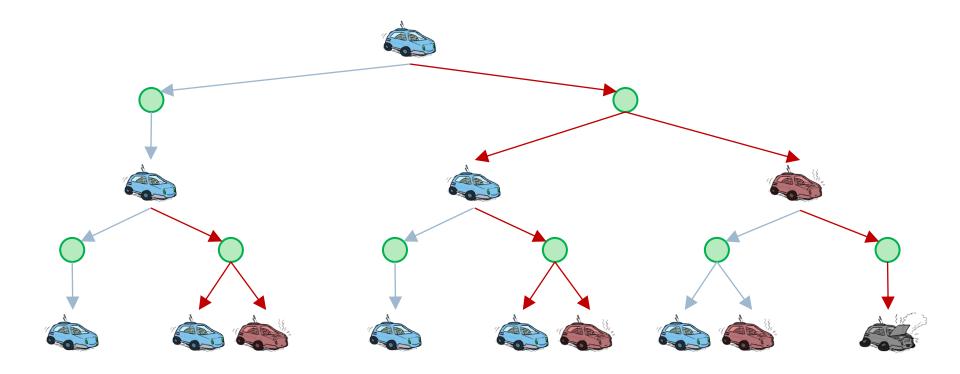
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*



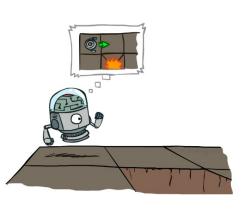
Example: Racing

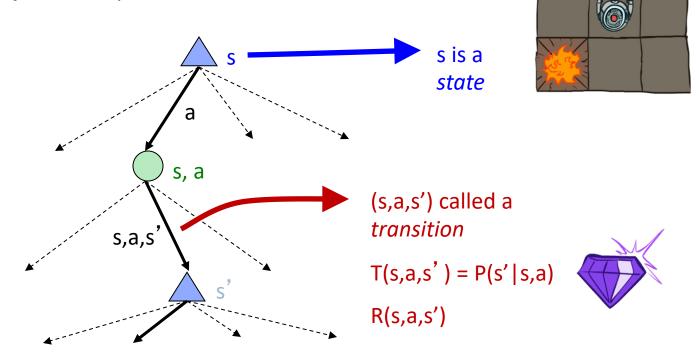




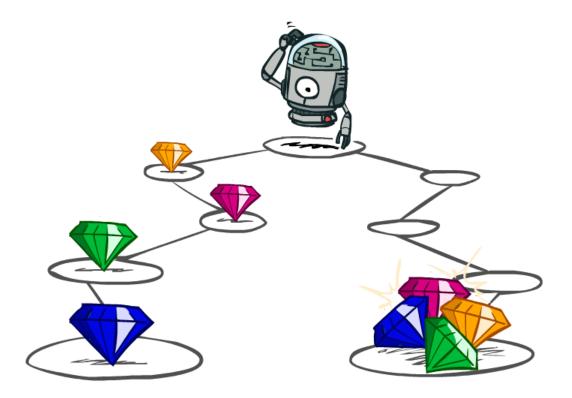
MDP Search Trees

• Each MDP state projects an expectimax-like search tree





Utilities of Sequences



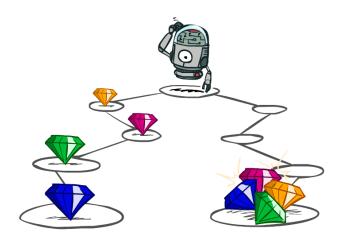
Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less?

[1, 2, 2] or [2, 3, 4]

• Now or later?

[0, 0, 1] or [1, 0, 0]

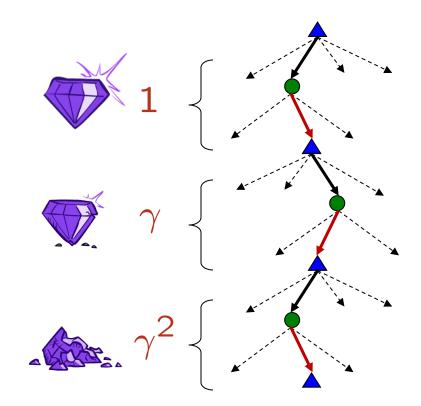


Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])



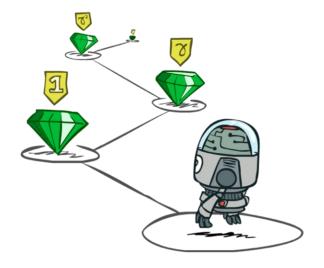
Stationary Preferences

• Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

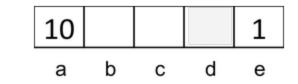
$$(r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$



Quiz: Discounting

• Given:



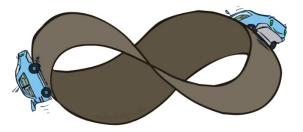
- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma = 1$, what is the optimal policy?
- Quiz 2: For γ = 0.1, what is the optimal policy?
- Quiz 3: For which γ are West and East equally good when in state d?

Infinite Utilities?!

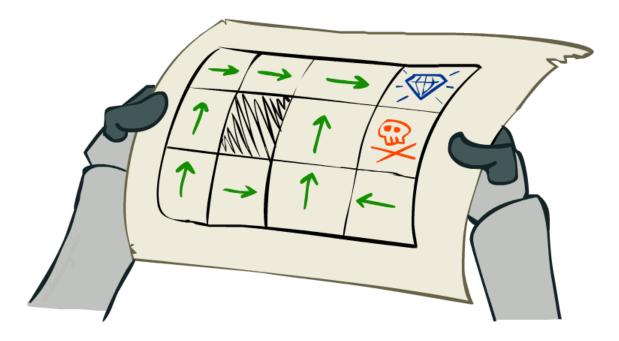
- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

 $U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$ Smaller γ means smaller "horizon" – shorter term focus

 Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

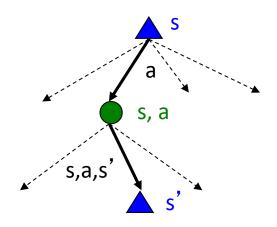


Solving MDPs



Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards



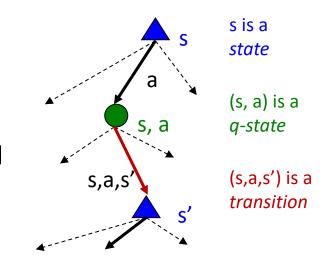
Optimal Quantities

The value (utility) of a state s:

V^{*}(s) = expected utility starting in s and acting optimally

- The value (utility) of a q-state (s,a):
 Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:

 $\pi^*(s)$ = optimal action from state s

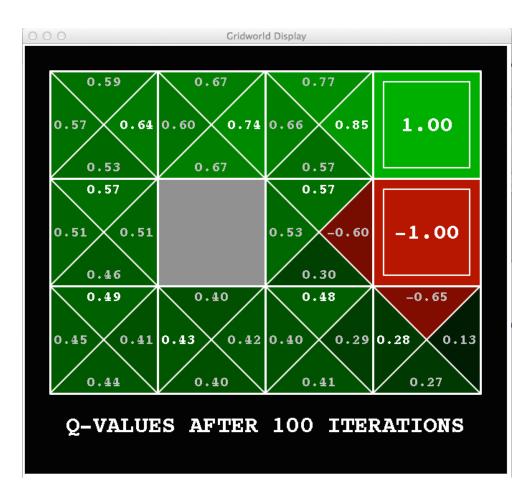


Snapshot of Demo – Gridworld V Values

000	Gridworld Display					
0.6	4 ▶	0.74 →	0.85)	1.00		
0.5	7		0. 57	-1.00		
0.4	9 ∢	0.43	▲ 0.48	∢ 0.28		
VALUES AFTER 100 ITERATIONS						

Noise = 0.2 Discount = 0.9 Living reward = 0

Snapshot of Demo – Gridworld Q Values



Noise = 0.2 Discount = 0.9 Living reward = 0

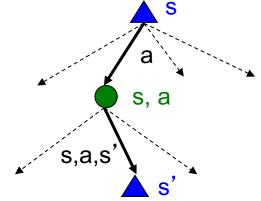
Values of States

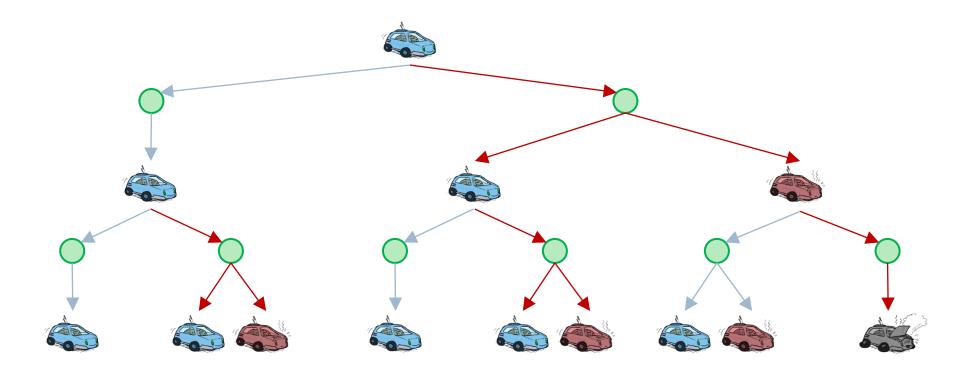
- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

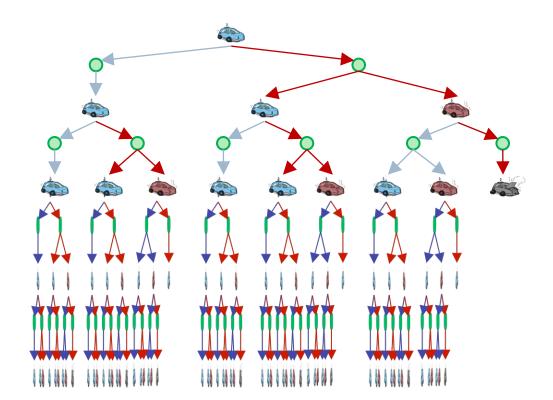
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

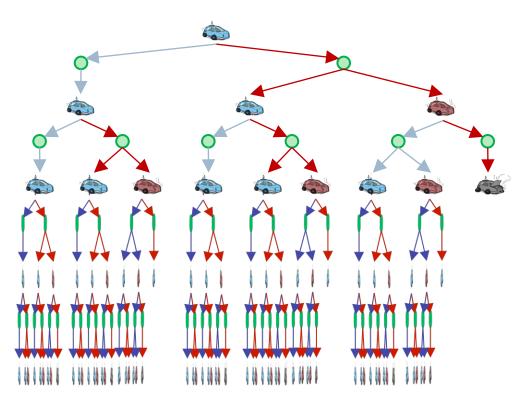




D



- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$



Value Iteration

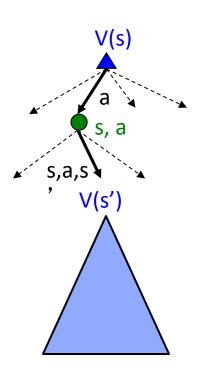
• Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

• Value iteration computes them:

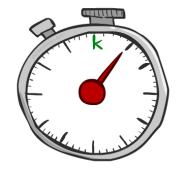
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

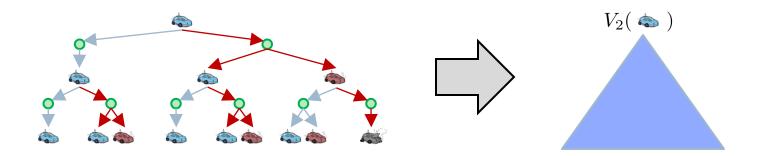
- Value iteration is just a fixed point solution method
 - ... though the V_k vectors are also interpretable as time-limited values



Time-Limited Values

- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s



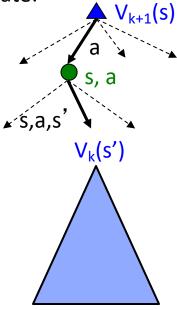


Value Iteration

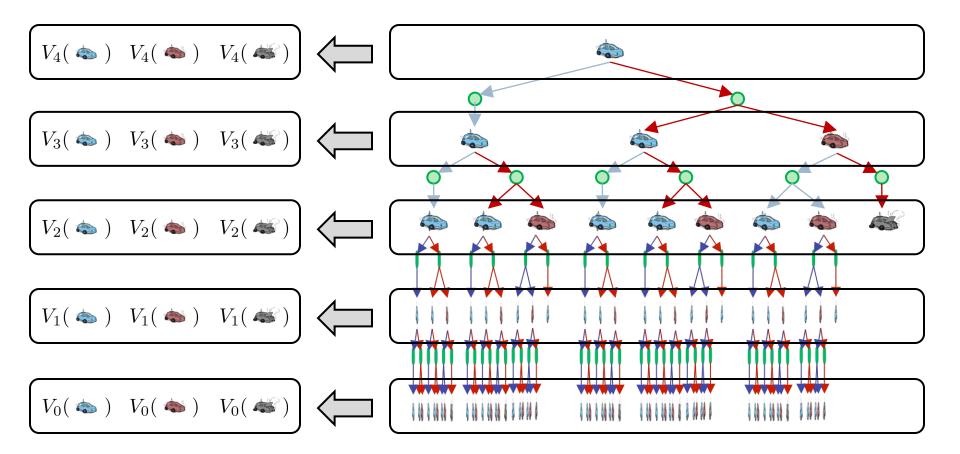
- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Repeat until convergence



Computing Time-Limited Values



k=0

00	C C C Gridworld Display						
	0.00	0.00	0.00	0.00			
	^		^				
	0.00		0.00	0.00			
	^	^	^				
	0.00	0.00	0.00	0.00			
	VALUES AFTER 0 ITERATIONS						

Noise = 0.2 Discount = 0.9 Living reward = 0

00	Gridworld Display					
	•	•	0.00 →	1.00		
	•		∢ 0.00	-1.00		
	•	•	•	0.00		
	VALUES AFTER 1 ITERATIONS					

Noise = 0.2 Discount = 0.9 Living reward = 0

0 0 0	C Cridworld Display			
0.00	0.00 >	0.72 →	1.00	
0.00		•	-1.00	
0.00	•	•	0.00	
VALUES AFTER 2 ITERATIONS				

Noise = 0.2 Discount = 0.9 Living reward = 0

0 0 0	Gridworld Display				
0.00 >	0.52 →	0.78 ≯	1.00		
		^			
0.00		0.43	-1.00		
^	^	^			
0.00	0.00	0.00	0.00		
			-		
VALUES AFTER 3 ITERATIONS					

Noise = 0.2 Discount = 0.9 Living reward = 0

Cridworld Display			
0.37 →	0.66)	0.83)	1.00
0.00		0.51	-1.00
		•	
0.00	0.00 →	0.31	∢ 0.00
VALUES AFTER 4 ITERATIONS			

Noise = 0.2 Discount = 0.9 Living reward = 0

0 0 0	Gridworld Display			
0.51 →	0.72 →	0.84)	1.00	
^				
0.27		0.55	-1.00	
		^		
0.00	0.22 →	0.37	∢ 0.13	
VALUES AFTER 5 ITERATIONS				

000	Gridworld Display				
0.59)	0.73 ≯	0.85)	1.00		
0.41		•	-1.00		
0.21	0.31 →	▲ 0.43	∢ 0.19		
VALUI	VALUES AFTER 6 ITERATIONS				

0 0 0	Gridworld Display			
0.62 →	0.74 ▶	0.85)	1.00	
•		•		
0.50		0.57	-1.00	
		•		
0.34	0.36 →	0.45	◆ 0.2 4	
VALUE	VALUES AFTER 7 ITERATIONS			

000	O Gridworld Display				
0.63 →	0.74 →	0.85 →	1.00		
^		•			
0.53		0.57	-1.00		
^		•			
0.42	0.39 ≯	0.46	∢ 0.26		
VALUES AFTER 8 ITERATIONS					

000	Gridworld Display			
0.64 →	0.74 →	0.85 →	1.00	
^		•		
0.55		0.57	-1.00	
^		•		
0.46	0.40 ≯	0.47	◆ 0.27	
VALUE	VALUES AFTER 9 ITERATIONS			

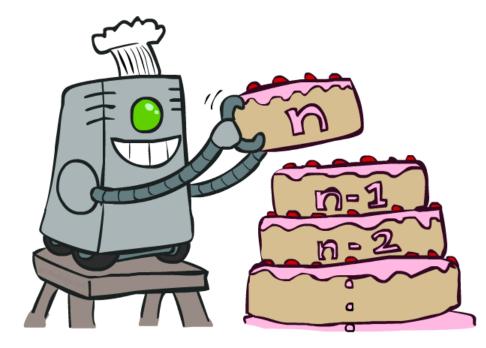
00	Gridworld Display			
0.64 →	0.74 →	0.85 →	1.00	
^		•		
0.56		0.57	-1.00	
^		•		
0.48	∢ 0.41	0.47	∢ 0.27	
VALUES AFTER 10 ITERATIONS				

000	Gridworld Display			
0.64	▶ 0.74 ▶	0.85 →	1.00	
^		^		
0.56		0.57	-1.00	
^		^		
0.48	• 0.42	0.47	• 0.27	
VALUES AFTER 11 ITERATIONS				

000	Gridworld Display			
0.64)	0.74 →	0.85 →	1.00	
• 0.57		• 0.57	-1.00	
▲ 0.49	∢ 0.42	• 0.47	∢ 0.28	
VALUE	VALUES AFTER 12 ITERATIONS			

000	Gridworld Display			
0.64 →	0.74 ≯	0.85 →	1.00	
^		^		
0.57		0.57	-1.00	
^		^		
0.49	∢ 0.43	0.48	∢ 0.28	
VALUES AFTER 100 ITERATIONS				

Value Iteration

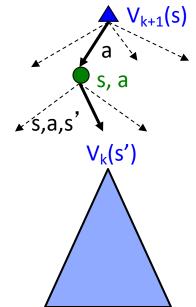


Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one ply of expectimax from each state:

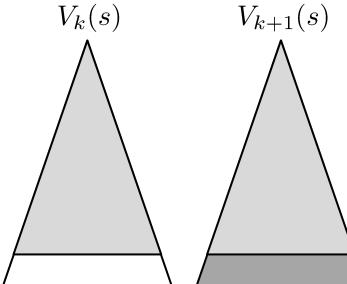
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

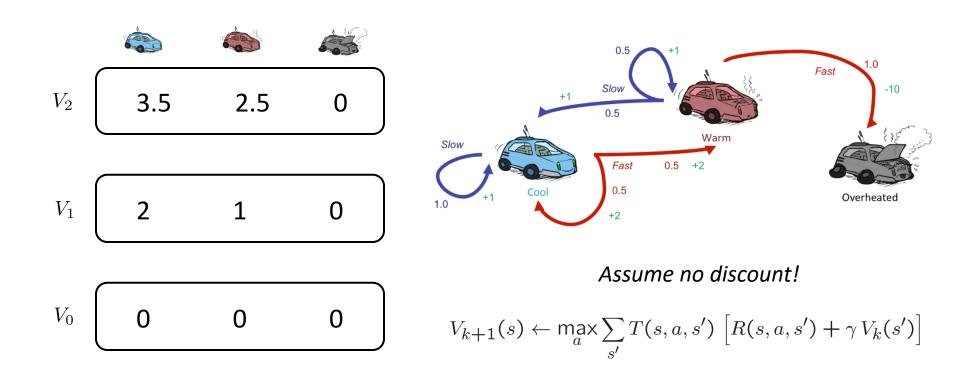


Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then
 V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by $\boldsymbol{\gamma}^k$ that far out
 - So as k increases, the values converge



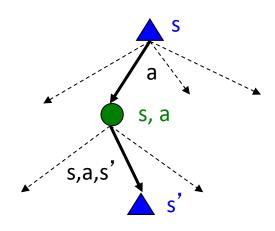
Example: Value Iteration



Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)

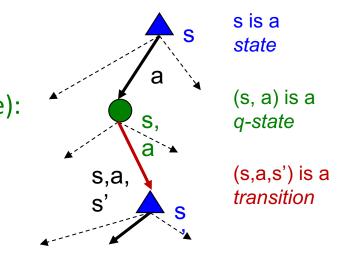
- Policy = map of states to actions
- Utility = sum of discounted rewards
- Values = expected future utility from a state (max node)
- Q-Values = expected future utility from a q-state (chance node)



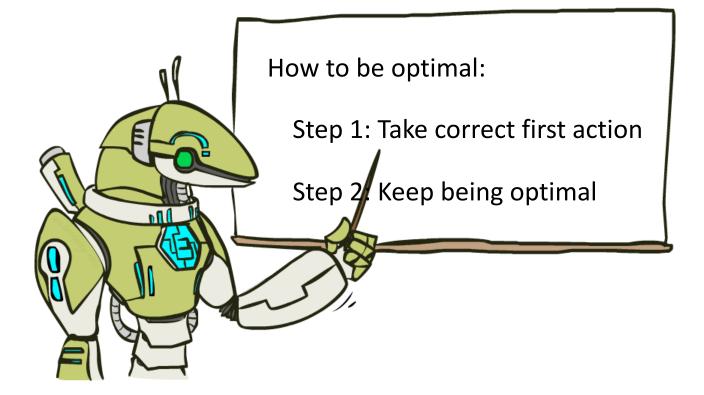
Recap: Optimal Quantities

- The value (utility) of a state s (max node):
 - V^{*}(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a) (chance node):
 Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:

 $\pi^*(s)$ = optimal action from state s

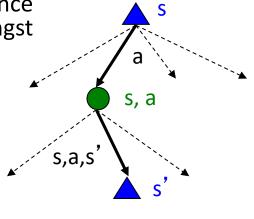


The Bellman Equations



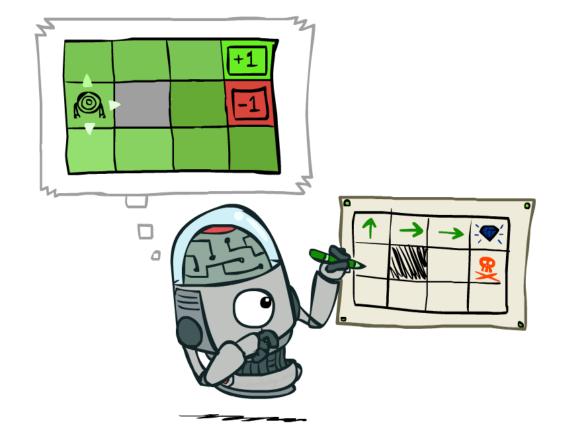
 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



• These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Policy Extraction



Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

0.95 ↓	0.96 ⊧	0.98 ⊧	1.00
▲ 0.94		∢ 0.89	-1.00
• 0.92	∢ 0.91	∢ 0.90	0.80

Computing Actions from Values

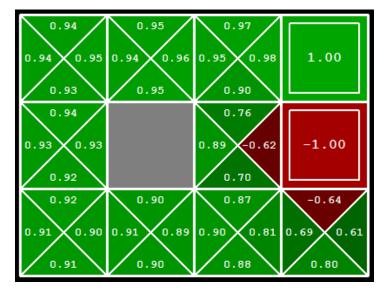
- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

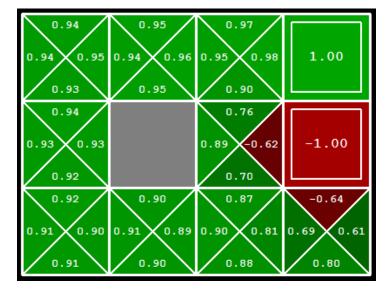
- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!



Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$



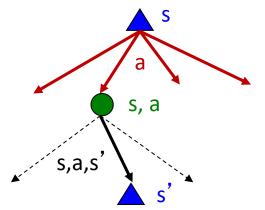
Important lesson: actions are easier to select from q-values than values!

Problems with Value Iteration

• Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Problem 1: It's slow O(S²A) per iteration
- Problem 2: The "max" at each state rarely changes



Problem 3: The policy often converges long before the values

00	○ ○ Gridworld Display				
ſ					
	0.00	0.00	0.00	0.00	
			^		
	0.00		0.00	0.00	
	_	^	_		
	0.00	0.00	0.00	0.00	
	VALUES AFTER O ITERATIONS				

Noise = 0.2 Discount = 0.9 Living reward = 0

000	Gridworl	d Display	
0.00	•	0.00 →	1.00
•		• 0.00	-1.00
0.00	•	•	0.00
VALUES AFTER 1 ITERATIONS			

000	Gridworl	d Display	
0.00	0.00 →	0.72 ≯	1.00
		^	
0.00		0.00	-1.00
	^	^	
0.00	0.00	0.00	0.00
			-
VALUES AFTER 2 ITERATIONS			

Noise = 0.2 Discount = 0.9 Living reward = 0

000	Gridworl	d Display		
0.00 >	0.52 →	0.78 ≯	1.00	
^		•		
0.00		0.43	-1.00	
	^			
0.00	0.00	0.00	0.00	
			-	
VALUE	VALUES AFTER 3 ITERATIONS			

Noise = 0.2 Discount = 0.9 Living reward = 0

000	Gridworl	d Display	
0.37 →	0.66 →	0.83 →	1.00
		^	
0.00		0.51	-1.00
		•	
0.00	0.00 →	0.31	∢ 0.00
VALUES AFTER 4 ITERATIONS			

Noise = 0.2 Discount = 0.9 Living reward = 0

67

000	Gridworl	d Display	
0.51 →	0.72 →	0.84)	1.00
^		•	
0.27		0.55	-1.00
^		^	
0.00	0.22 ≯	0.37	∢ 0.13
VALUES AFTER 5 ITERATIONS			

000	Gridworld	d Display		
0.59 →	0.73 →	0.85 →	1.00	
0.41		0. 57	-1.00	
0.21	0.31 →	▲ 0.43	∢ 0.19	
VALUE	VALUES AFTER 6 ITERATIONS			

Noise = 0.2 Discount = 0.9 Living reward = 0

000	Gridwork	d Display	
0.62 →	0.74 ▶	0.85)	1.00
^		^	
0.50		0.57	-1.00
^		•	
0.34	0.36 →	0.45	∢ 0.2 4
VALUES AFTER 7 ITERATIONS			

000	Gridworl	d Display	
0.63)	0.74 →	0.85 →	1.00
•		•	
0.53		0.57	-1.00
^		•	
0.42	0.39 →	0.46	∢ 0.26
VALUES AFTER 8 ITERATIONS			

000	Gridworl	d Display		
0.64 →	0.74 →	0.85 →	1.00	
0.55		0.57	-1.00	
^		•		
0.46	0.40 ≯	0.47	∢ 0.2 7	
VALUE	VALUES AFTER 9 ITERATIONS			

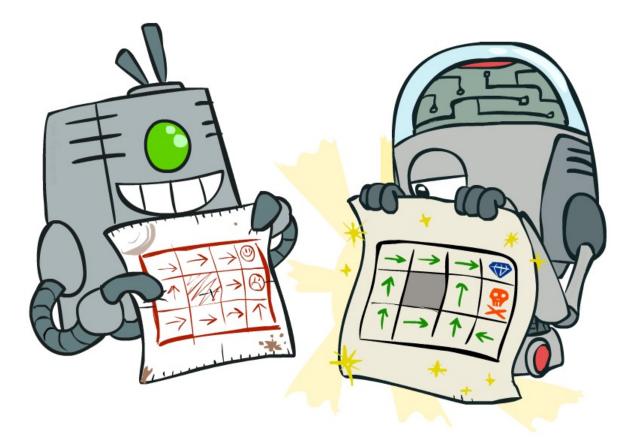
0 0 0	Gridworld Display		
0.64 →	0.74 →	0.85 →	1.00
^		•	
0.56		0.57	-1.00
^		•	
0.48	∢ 0.41	0.47	∢ 0.27
VALUE	VALUES AFTER 10 ITERATIONS		
VALUES AFTER IU ITERATIONS			

Gridworld Display			
0.64)	0.74 →	0.85 →	1.00
^		•	
0.56		0.57	-1.00
		•	
0.48	◀ 0.42	0.47	∢ 0.27
VALUES AFTER 11 ITERATIONS			

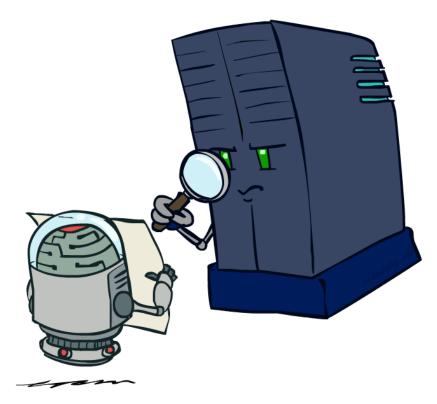
Cridworld Display				
0.64)	0.74 →	0.85)	1.00	
0. 57		0. 57	-1.00	
▲ 0.49	∢ 0.42	• 0.47	∢ 0.28	
VALUE	VALUES AFTER 12 ITERATIONS			

Gridworld Display			
0.64	0.74 >	0.85)	1.00
^		^	
0.57		0.57	-1.00
^		^	
0.49	∢ 0.43	0.48	∢ 0.28
VALUES AFTER 100 ITERATIONS			

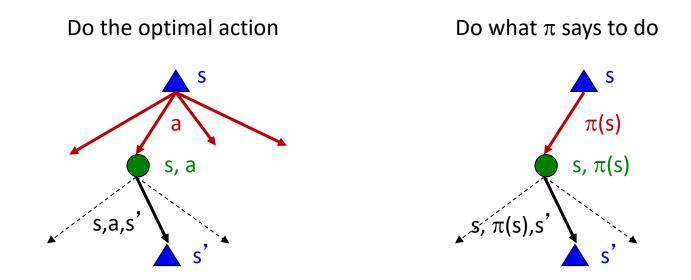
Policy Methods



Policy Evaluation

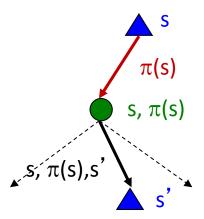


Fixed Policies



- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 V^π(s) = expected total discounted rewards starting in s and following π



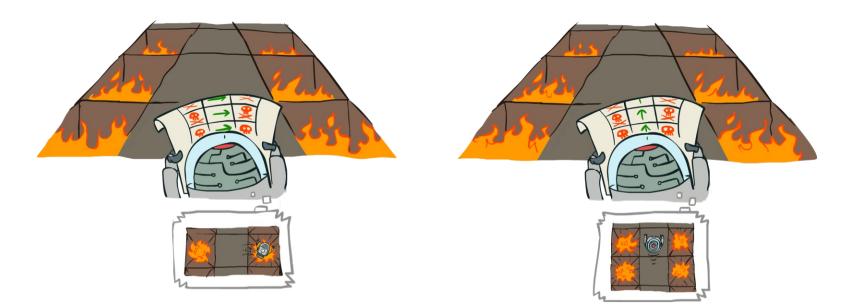
Recursive relation (one-step look-ahead / Bellman equation):

 $V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$

Example: Policy Evaluation

Always Go Right

Always Go Forward



Example: Policy Evaluation

Always Go Right

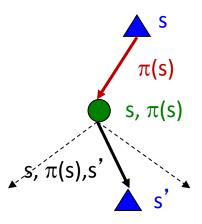
-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 ▶	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Forward

-10.00	100.00	-10.00
-10.00	70.20	-10.00
-10.00	▲ 48.74	-10.00
-10.00	3 3.30	-10.00

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)



Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system

S

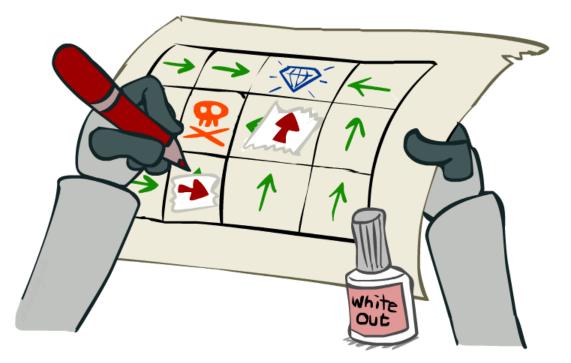
π(s)

s, π(s)

s, π(s),s

• Solve with your favorite linear system solver

Policy Iteration



Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Convergence property of policy iteration: $\pi \rightarrow \pi \star$

- Proof involves showing that each iteration is also a contraction, and policy must improve each step, or be optimal policy
- Interesting theoretical note: since number of policies is finite (though exponentially large), policy iteration converges to *exact* optimal policy
- In theory, could require exponential number of iterations to converge (though only for γ very close to 1), but for some problems of interest, converges much faster

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Policy iteration or value iteration?

- Policy iteration requires fewer iterations that value iteration, but each iteration requires solving a linear system instead of just applying Bellman operator
- In practice, policy iteration is often faster, especially if the transition probabilities are structured (e.g., sparse) to make solution of linear system efficient
- *Modified policy iteration* (Putterman and Shin, 1978) solves linear system approximately, using backups very similar to value iteration
 - often performs better than either value or policy iteration

This slide has been adopted from:

Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
 - They basically are they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions